马兜铃酸致大鼠肾小管损伤及对肾组织骨形态发生蛋白7 mRNA表达的影响
【摘要】 目的:观察关木通成分马兜铃酸(aristolochic acid, AA)引起的大鼠肾小管损伤,及肾组织骨形成蛋白7(bone morphogenetic protein?7, BMP?7)mRNA表达水平的变化,探讨马兜铃酸肾病的发病机制。
方法:46只Wistar大鼠随机分为正常对照组20只和AA组26只。AA组按AA 20 mg/(kg·d)灌胃关木通浸膏,正常对照组等容量饮用水灌胃。于第4、8和12周末用代谢笼分别留取24 h尿液,检测尿N?乙酰?β?D?氨基葡萄糖苷酶(N?acetyl?β?D?glucosaminidase, NAG)活性;腹主动脉取血检测血清肌酐(serum creatinine, SCr)含量;观察肾组织病理的改变及肾小管损伤程度;免疫组化检测肾小管增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)表达;半定量逆转录聚合酶链式反应法检测肾组织BMP?7 mRNA的表达。
结果:与正常对照组比较,用药4、8和12周后AA组大鼠尿NAG活性增加,差异有统计学意义(P<0.05,P<0.01),SCr/体质量比值升高(P<0.01)。肾脏病理表现为肾小管浊肿、变性和脱落等急性小管间质损伤,随着用药时间延长,肾小管损伤程度进行性加重;AA组大鼠肾小管PCNA增殖指数在用药4周和8周后显著升高(P<0.01),12周后有所下降(P<0.05);用药4周后,AA组大鼠肾组织BMP?7 mRNA表达低于对照组(P<0.05),并随着用药时间延长减少更明显(P<0.01)。
结论:AA可引起大鼠肾小管损伤,使肾小管再生修复能力下降,抑制BMP?7 mRNA表达。这可能是马兜铃酸肾病发生的机制之一。
【关键词】 马兜铃酸; 肾小管; 关木通; 骨形态发生蛋白7; 大鼠
Objective: To investigate the pathogenic mechanism of aristolochic acid nephropathy (AAN) by observing the renal tubular injury and the change of the expression of bone morphogenetic protein?7 (BMP?7) mRNA in renal tissue of rats induced by aristolochic acid (AA), an active constituent in Caulis Aristolochiae Manshuriensis (CAM).
Methods: Forty?six male Wistar rats were randomly divided into normal control group (n=20) and AA?treated group (n=26). Rats in AA?treated group were intragastrically administered with AA 20 mg/(kg·d), and rats in control group were treated with equal volume of potable water. At the end of the 4th, 8th and 12th week of administration, the 24 h?urine was collected by metabolic cage for detecting the activity of N?acetyl?β?D?glucosaminidase (NAG) and the blood samples were obtained from abdominal aorta for detecting serum creatinine (SCr). Pathological change and the degree of injury of the kidneys were observed by microscopy. The expression of proliferative cell nuclear antigen (PCNA) was detected by immunohistochemical method, and mRNA expression of bone morphogenetic protein?7 (BMP?7) in the renal tissue was detected by reverse transcription polymerase chain reaction (RT?PCR).
Results: Compared with the normal control group, the activity of NAG and the ratio of SCr vs body weight were markedly increased in rats of the AA?treated group after treatment (P<0.05 and P<0.01). Pathological section of renal tissue showed that most renal tubules had cloudy swelling, and vacuolar degenerating in tubular epithelial cells, with brush border dropping off, and parts of tubular basement membrane were exposed. The degrees of injuries were aggravated depending on treating time. The tubulointerstitial injury (TI) parameter in rats of AA?treated group was higher than that of the normal control group. The positive expression of PCNA was observed in the damaged tubular cells. The proliferation index of PCNA was significantly increased after 4? and 8?week treatment (P<0.01), but was decreased after 12?week treatment (P<0.05). The mRNA expression of BMP?7 was markedly decreased in the AA?treated group compared with the normal control group after 4?week treatment (P<0.05), and decreased with the extension of treatment time.
Conclusion: AA can induce injury of the renal tubules, impair the cell regeneration, and inhibit the expression of BMP?7 mRNA in renal tissue. This may be one of the pathogenic mechanisms of AAN.
Keywords: aristolochic acid; kidney tubule; Caulis Aristolochiae Manshuriensis; bone morphogenetic protein?7; rats
关木通有效成分马兜铃酸(aristolochic acid, AA)具有肾毒性作用,主要引起肾小管上皮细胞损伤和坏死[1]。一般认为肾小管上皮细胞具有强大的自身修复能力,肾小管损伤后可立即启动修复机制,使肾小管上皮细胞增殖再生,结构和功能重建;若损伤持续存在或细胞丧失自身修复能力,组织结构将受到不可逆损伤并丧失功能,则进入慢性纤维化[2]。许多细胞因子参与调控肾小管增殖再生和修复,其中以骨形态发生蛋白7(bone morphogenetic protein?7, BMP?7)与损伤再生修复关系密切,在维持肾脏组织结构和功能方面具有重要作用[3]。目前尚不清楚AA对肾小管损害及小管再生修复的影响,本课题观察关木通所含AA对大鼠肾小管损伤及BMP?7表达的影响,以探讨马兜铃酸肾病(aristolochic acid nephropathy, AAN)的发生发展机制。
1 材料与方法
1.1 实验材料
1.1.1 实验动物 雄性Wistar大鼠46只,SPF级,1月龄,体质量88~102 g,由院上海实验动物中心提供,动物合格证号为SCXK(沪)2003?003。
1.1.2 药品和试剂 关木通购自杭州市环龙药店,由上海市药品监督检验所鉴定为马兜铃科植物东北马兜铃Aristolochia manshuriensis Kom的干燥藤茎。关木通由解放军四五五药厂制备成浸膏剂:取关木通生药饮片20 kg,加8倍体积的95%乙醇,加热至微沸,煎煮2 h,回收提取液,同法再煎煮2次,将3次提取液合并,浓缩成流浸膏,4 ℃保存。经上海市药品检验所测定关木通浸膏中AA含量为25.3 mg/g(2004沪药研发177号)。使用时以蒸馏水配制成1 mg/ml水溶液(按马兜铃酸质量)。小鼠增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)单克隆抗体为CALBIO?CHEM公司产品;二抗为生物素标记兔抗鼠IgG,显色系统为辣根过氧化物酶(horseradish peroxidase, HRP)/二氨基丁酸(diaminobutyricacid, DAB)(美国Santa?Cruz公司);TRIzol试剂盒为日本东洋纺公司产品,Taq酶为美国应用生物系统有限公司产品,琼脂糖为BIOWEST公司产品。
1.2 实验方法
1.2.1 实验分组及标本采集 动物适应性喂养3 d后,46只大鼠随机分为正常对照组20只和AA组26只。AA组根据大鼠体质量按AA 20 mg/(kg·d)灌胃关木通浸膏,正常对照组予相同容量饮用水灌胃。实验期间所有大鼠于同一饲舍中饲养,每2周随机换位喂养。分别于第4、8和12周末用代谢笼法留取24 h尿液用于尿N?乙酰?β?D?氨基葡萄糖苷酶(N?acetyl?β?D?glucosaminidase, NAG)检测;氯氨酮麻醉后立即剖腹,腹主动脉采血,分离血清用于血清肌酐(serum creatinine, SCr)检测。剥离肾包膜取新鲜的肾组织,左肾取前半部分横切厚度约1 mm组织数片,分别置于10%中性福尔马林和2.5%戊二醛中固定;右肾立即液氮冷冻后置-80 ℃低温冰箱保存。因实验第11和12周有动物死亡,各时间点取6只动物用于结果统计。
1.2.2 生化检测 尿NAG活性检测采用比色法;SCr含量采用BECKMANZ自动生化分析仪检测,由于AA组大鼠体质量(body weight, BW)变动较大,单纯用SCr指标不足以反映肾功能变化,故用SCr/BW进行校正后反映肾功能情况。
1.2.3 肾脏病理检查 肾脏组织经固定、脱水、石蜡包埋,切片4 μm厚度,常规HE、PAS和Masson染色,采用IMS彩色病理图像分析系统,由上海医科大学图像分析室进行分析。肾小管损伤程度采用“点计数”评估:在高倍视野(×200)下选取20个肾皮质视野,观察显微镜目镜的标尺上出现肾小管损伤的点数,计算损伤肾小管(小管扩张、变性、坏死和萎缩等)的数目占总肾小管数目的百分比。肾小管间质损伤(tubulointerstitial injury, TI)指数判断标准包括:(1) 皮质区肾间质纤维化程度;(2) 炎性细胞浸润程度;(3) 肾小管扩张或萎缩程度。损伤程度分为6级[3]∶0级为正常;1级为病变范围<10%;2级为病变范围10%~24%;3级为病变范围25%~50%;4级为病变范围51%~75%;5级为病变范围>75%。每张切片随机选取20个皮质区视野(×100)。
1.2.4 免疫组化法检测肾小管PCNA表达 采用免疫组织化学链霉菌抗生物素蛋白?过氧化物酶连结法(streptavidin?peroxidase, SP)检测PCNA表达。染色程序按试剂盒说明书进行。PCNA单克隆抗体工作浓度为1∶100,以PBS代替一抗为阴性对照,镜下细胞核呈棕黄色为增殖细胞。在光镜下观察10个正切肾小管(×100),计数增殖细胞数,计算平均值作为增殖指数。
1.2.5 肾实质BMP?7 mRNA表达的检测 每组取4只大鼠,半定量逆转录聚合酶链式反应(reverse transcription polymerase chain reaction,RT?PCR)法检测BMP?7 mRNA表达。TRIzol一步法提取肾组织总RNA,紫外分光光度计检测RNA含量,所有样品206 nm和280 nm吸光度比值在1.8~2.0之间。逆转录合成cDNA,然后进行PCR扩增,引物序列由上海生工生物工程技术服务有限公司合成。BMP?7上游引物5’?TAC TAC TGT GAG GGA GAG TG?3’,下游引物3’?TGC CTT CCC TCT GAA CTC CT?5’;反应条件为95 ℃ 5 min,95 ℃ 30 s,53 ℃ 20 s,72 ℃ 30 s,35个循环,72 ℃ 10 min,产物长度241 bp。以甘油醛?3?磷酸脱氢酶(glyceraldehyde?3?phosphate dehydrogenase, GAPDH)为内参照,上游引物5’?TGC TGA GTA TGT CGT GGA G?3’,下游引物3’?TAG TGA CGG TGA GTC TTC TG?5’;反应条件为95 ℃ 5 min,95 ℃ 30 s,52 ℃ 20 s,72 ℃ 30 s,35个循环,72 ℃ 10 min,产物长度288 bp。反应完毕后,PCR产物以1.8%琼脂糖凝胶电泳,用Tanon GIS?2008凝胶图像处理系统成像,用DNA Engine OpticonTM 1.02版图像分析软件分析各电泳条带得像强度(picture intensity, PI)值,mRNA相对表达量=PIBMP?7/PIGAPDH。
1.3 统计学方法 计量资料数据以x±s表示,用SPSS 10.0 for Windows统计分析软件进行统计学处理,组间比较采用单因素方差分析。
2 结果
2.1 大鼠尿NAG活性和SCr/BW 用药4周后与正常对照组比较,AA组大鼠尿NAG活性明显增高(P<0.05,P<0. 01),SCr/BW水平进行性升高(P<0.01),提示AA可引起肾小管损伤。见表1。
表1 大鼠尿NAG活性和SCr/BW变化(略)
Table 1 Changes of activity of urinary NAG and ratio of SCr/BW in rats in two groups
*P<0.05, **P<0.01, vs normal control group.
2.2 大鼠肾脏病理改变 光镜观察显示,各时间点正常对照组肾小球和肾小管结构清晰,形态正常,无异常病理表现。用药4周后AA组出现弥漫性小管上皮细胞损害,HE染色可见大部分小管浊肿,刷状缘脱落,灶性小管上皮细胞崩解、脱落及空泡变性,偶见基底膜增厚和裸露;小血管周围及间质有散在炎细胞浸润,以单个核细胞为主。8周后部分肾小管空泡变性呈片状分布,PAS染色见部分小管基底膜增厚、裸露和断裂,Masson染色可见散在的小管灶性萎缩和肾间质纤维化,少数小动脉管壁增厚,管腔狭窄。12周后小管上皮细胞变性坏死更严重,片状的小管萎缩和结构紊乱,间质纤维化更明显。随用药时间延长,肾小管损伤程度呈进行性加重,第12周时损伤程度最严重,达92.93%,TI指数也显著高于对照组(P<0.01),见表2和图1、2。
2.3 大鼠肾小管PCNA表达 处于增殖期的细胞,PCNA阳性物质主要位于核内,呈棕黄色圆形颗粒状,细胞质内也可见少许淡着色。用药4周和8周后AA组PCNA主要表达于损伤的肾小管,其增殖指数显著高于正常对照组(P<0.01),12周后坏死和萎缩的肾小管数目增多,PCNA增殖指数下降,但与对照组比较差异仍有统计学意义(P<0.05)。见表3和图3。
2.4 肾实质BMP?7 mRNA表达 用药4周后,AA组大鼠肾组织BMP?7 mRNA的表达低于正常对照组(P<0.05),随着病变进展其表达逐渐减少,12周时达最低水平,与对照组比较差异有统计学意义(P<0.01)。见表4和图4。
表2 大鼠肾小管损伤程度和TI指数(略)
Table 2 Degree of tubular injury and TI parameter in rats in two groups
**P<0.01, vs normal control group.
图1 光学显微镜观察灌胃第8周大鼠肾脏病理(PAS染色,×200)(略)
Figure 1 Pathological section of renal tissue at the 8th week of administration under light microscope (PAS staining, ×200)
In control group (A), the configuration of renal tubule was normal, and there was no pathological change. In AA?treated group (B), most renal tubule had cloudy swelling, with brush border dropped off, and there was vacuolar degeneration in tubular epithelial cells, and parts of tubular basement membrane were exposed.
图2 光学显微镜观察灌胃第12周大鼠肾脏病理(Masson染色,×200)(略)
Figure 2 Pathological section of renal tissue at the 12th week of administration under light microscope (Masson staining, ×200)
In control group (A), there showed no tubular?interstitial fibrosis. In AA?treated group (B), extensive and severe renal tubular necrosis, patches of tubule atrophy and focal interstitial fibrosis were observed.
表3 各时间点大鼠肾小管PCNA增殖指数(略)
Table 3 Proliferation index of PCNA in renal tubules of rats in two groups at different time
*P<0.05, **P<0.01, vs normal control group.
图3 大鼠肾小管PCNA表达(免疫组织化学染色,×400)(略)
Figure 3 Expression of PCNA in renal tubules in rats in two groups (Immunohistochemical staining, ×400)
A: Normal control group; B: AA?treated group.
表4 各时间点大鼠肾实质BMP?7 mRNA表达(略)
Table 4 Expression of BMP?7 mRNA in renal parenchyma of rats in two groups at different time
*P<0.05, **P<0.01, vs normal control group.
图4 RT?PCR检测肾实质BMP?7 mRNA表达(略)
Figure 4 Expression of BMP?7 mRNA in renal parenchyma tested by RT?PCR method
A: Normal control group; B: AA?treated group after 4?week treatment; C: AA?treated group after 8?week treatment; D: AA?treated group after 12?week treatment.
3 讨论
AA肾损害的发生机制至今不清楚,其可能机制为,AA具有细胞毒性作用,直接损伤肾小管上皮细胞,引起细胞坏死或凋亡[4, 5];刺激肾间质成纤维细胞增生,诱导肾小管上皮细胞转分化[6];引起细胞核变异[7];损伤肾小血管壁,导致缺血性肾损伤等[8]。一般认为肾毒性损伤发生后,存活的肾小管上皮细胞可以立即启动损伤修复机制,促使生长因子转录和表达,使肾小管再生,结构和功能重建。PCNA是细胞增殖分裂时分泌的一种蛋白[9],细胞大量表达PCNA表明其增殖反应活跃,是细胞再生修复的标志。有报道提示AAN患者的肾脏病理表现有肾小管损伤后再生修复能力受抑制,纤维化倾向严重[10]。本课题通过观察AA对肾小管间质的毒性损伤作用、肾小管上皮细胞再生修复情况以及在此过程中BMP?7的表达情况,了解AA是否会损害肾小管的损伤修复功能。
研究结果提示,随着AA作用时间延长,肾小管损伤标志NAG活性增高,肌酐水平则明显增高,肾功能损伤进行性加重,肾脏病理早期表现为肾小管变性和坏死等急性肾小管间质损伤,随着进一步用药,病理损害逐渐加重,后期肾小管结构紊乱严重,并出现较严重的灶性萎缩及间质早期纤维化,肾小管损伤百分数和TI指数明显升高,与对照组比较差异有统计学意义(P<0.01)。同时大鼠肾组织PCNA表达在用药4周时明显增高,8周时达高峰,主要表达在损伤肾小管上皮细胞,但随着时间延长,增殖指数呈下降趋势,第12周时多数基底膜裸露的肾小管很少有PCNA表达。表明在AA的持续作用下,肾小管出现严重损伤坏死,损伤的肾小管上皮细胞增生修复能力受抑制,细胞再生修复机制受损。
BMP?7是转化生长因子β(transforming growth factor?β,TGF?β)超家族中的一个亚群,在肾脏中含量最丰富,具有独特的恢复和维持上皮细胞表型、抑制肾脏上皮细胞凋亡、减少多种促炎症因子表达、激活细胞外基质降解、影响TGF?β1及其细胞内信号转导分子Smads蛋白途径等作用,在维持肾脏组织结构和功能中具有重要作用,是一个重要的肾脏保护因子[11]。研究发现在多种慢性肾脏病动物模型中,BMP?7表达减少或缺如,给予一定剂量的BMP?7可改善肾小管损伤,延缓甚至逆转已发生的肾脏损伤[12]。本实验结果提示AA组大鼠肾组织中BMP?7的表达水平明显下降(P<0.05),随着小管间质病变加重,其表达水平下降更加显著(P<0.01),故认为在AAN进展过程中BMP?7表达水平严重受抑制,可能与AAN肾小管损伤和再生修复能力下降,以及肾纤维化进展有关,补充外源性BMP?7能否改善AAN肾损害进展,有待进一步研究证实。
综上所述,中药关木通主要成分AA可引起大鼠肾小管损伤,使肾小管再生修复能力下降,并抑制BMP?7 mRNA表达,上述改变可能是AAN发生机制之一。关木通所含AA可分为马兜铃酸Ⅰ、Ⅱ、Ⅳ、Ⅲa、Ⅳa及马兜铃次酸Ⅱ、马兜铃内酰胺Ⅲa等,这些成分中哪些是主要致肾损伤因素,尚待进一步研究。
【】
1 Zhou N, Li XM. New advances on researches of aristolochic acid nephropathy. Yao Wu Bu Liang Fan Ying Za Zhi. 2007; 9(1): 1?6. Chinese with abstract in English.
周娜, 李晓玫. 马兜铃酸肾病研究的新进展. 药物不良反应杂志. 2007; 9(1): 1?6.
2 Nony PA, Schnellmann RG. Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther. 2003; 304(3): 905?912.
3 Zeisberg M, Shah AA, Kalluri R. Bone morphogenic protein?7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem. 2005; 280(9): 8094?8100.
4 Wang HL, Zhang JY, Huang J. Experimental study on the correlation of aristolochic acid dosage and renal toxicity. Lin Chuang Shen Zang Bing Za Zhi. 2005; 5(6): 261?264. Chinese with abstract in English.
王会玲, 张金元, 黄健. 马兜铃酸剂量与大鼠肾损害相关性研究. 临床肾脏病杂志. 2005; 5(6): 261?264.
5 Wang WW, Zhang JY. Effect of erythropoietin on renal tubular epithelial cells stimulated by aristolochic acid. Shen Zang Bing Yu Tou Xi Shen Yi Zhi Za Zhi. 2006; 15(6): 531?534. Chinese with abstract in English.
王巍巍, 张金元. 促红细胞生成素对马兜铃酸致肾小管上皮细胞凋亡的影响. 肾脏病与透析肾移植杂志. 2006; 15(6): 531?534.
6 Su Z, Xu SW, Zheng FL, et al. Aristolochic acid induced transdifferentiation and apoptosis in human tubular epithelial cells in vitro. Zhonghua Yu Fang Yi Xue Za Zhi. 2002; 36(5): 301?304. Chinese with abstract in English.
苏震, 徐少伟, 郑法雷, 等. 马兜铃酸对人肾小管上皮细胞转分化和凋亡作用的体外实验研究. 中华预防医学杂志. 2002; 36(5): 301?304.
7 Lebeau C, Arlt VM, Schmeiser HH, et al. Aristolochic acid impedes endocytosis and induces DNA adducts in proximal tubular cells. Kidney Int. 2001; 60(4): 1332?1342.
8 Yang L, Li XM, Wang SX, et al. Peritubular capillary injury in Chinese herb guan?mu?tong?induced acute tubular necrosis. Zhonghua Nei Ke Za Zhi. 2005; 44(7): 525?529. Chinese with abstract in English.
杨莉, 李晓玫, 王素霞, 等. 关木通致急性肾小管坏死患者肾间质微血管病变的研究. 中华内科杂志. 2005; 44(7): 525?529.
9 Leung AY, Leung JC, Chan LY, et al. Proliferating cell nuclear antigen (PCNA) as a proliferative marker during embryonic and adult zebrafish hematopoiesis. Histochem Cell Biol. 2005; 124(2): 105?111.
10 Yang L, Li XM, Wang HY. A comparative study of manchurian dutchmanspipe and antibiotics induced acute tubular necrosis in renal cellular biological features. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2003; 23(5): 329?334. Chinese with abstract in English.
杨莉, 李晓玫, 王海燕. 关木通与抗生素致急性肾小管坏死细胞生物学特征的比较研究. 中西医结合杂志. 2003; 23(5): 329?334.
11 Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein?7 and hepatocyte growth factor. Kidney Int Suppl. 2003; (87): 105?112.
12 Ikeda Y, Jung YO, Kim H, et al. Exogenous bone morphogenetic protein?7 fails to attenuate renal fibrosis in rats with overload proteinuria. Nephron Exp Nephrol. 2004; 97(4): 123?135.