有关在药物研究中超临界流体技术的研究

来源:岁月联盟 作者: 时间:2015-10-12
       2超临界流体技术用于微粉化
        传统的微粉化方法往往会损伤药效成分,而基于超临界流体沉降技术的微粉化方法条件相对比较温和,因此适用于制备具热敏性、易降解的药物超细颗粒。并且该技术制得的药物颗粒中无溶剂残余,有利于药物后续处理及环境保护。其基本原理是使溶液在极短的时间内达到高度过饱和状态,从而使溶质瞬时析出形成超细颗粒。更重要的是,利用SFP制备的药物粒子粒径小、粒径分布窄、粒子均一及表面圆整,从而该技术在干粉吸入剂的制备中备受国内外研究者的青睐。目前, SFP用于制备粒径均一的超细粒子的主要方法有超临界溶液快速膨胀法、超临界抗溶剂法和气体饱和溶液法。由于SAS法对于控制超微粒子的物理形态在以上方法中占据明显优势,因此在干粉吸入剂的研究中又以SAS较为多见[2]。
        3超临界流体技术用于手性药物的分离
        超临界流体色谱采用超临界流体为流动相,具有检测方式和固定相种类多样的特点,在手性分离方面较好地弥补了高效液相色谱和气相色谱的不足,体现出良好的应用前景。与其他液相色谱(LC)相比, SFC不必要在对映选择性上提供优越性。但与典型的有机液体相比,超临界液体的粘度更小、扩散性更大、流速更高、柱平衡更快,从而可以实现比较快的拆分。采用手性固定相进行手性拆分时,流动相的选择是至关重要的。通常采用CO2作为流动相,但是CO2对极性化合物的溶解和洗脱能力比较弱,易造成峰形拖尾。因此实际工作中常在CO2中加入少量极性溶剂(甲醇、乙醇等)或者添加剂(酸或碱),这样既可覆盖固定相表面的活性部位,又可增加流动相的洗脱强度和选择性。在分离强极性离子型化合物时,有时即使在CO2中加入极性改性剂也不能改善洗脱时间和拖尾状况;而加入手性反离子后,离子型化合物与手性反离子形成非离子型的离子对复合物,可被CO2洗脱。离子对超临界流体色谱也可以在非手性柱上得以应用。为了达到所要求的对映选择性,柱子的固定相可从多种可能的手性固定相中选择。综合所有这些因素可以找到最佳分离条件。
        4展望
        超临界流体技术以其独特的优势在药学领域中得到广泛的应用,但是仍然有一些问题需要加以解决和完善,包括设备自动化程度的提高以便越来越精确地控制条件参数,规模的不断扩大以适合于工业化和产业化大生产以及应用面的不断扩展是今后该领域研究和应用的主要发展方向。
参考文献
[1]朱自强.超临界流体技术原理和应用[M].北京:化学工业出版社, 2000: 3-4.
[2]金竹萍.超临界流体萃取技术的应用及研究进展[ J].山西化工, 2007, 27(2): 42-6.

图片内容