基因芯片技术的临床应用
来源:岁月联盟
时间:2010-07-13
一、基因芯片的工作原理
基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。
基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法,即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。
芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列,然后通过机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定
位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密
度芯片的标准化和规模化生产。
待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程,对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶
基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱,常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息。
基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。
二、基因芯片的临床应用
1、基因表达图谱的绘制
基因表达图谱的绘制是目前基因芯片应用最广泛的领域,也是人类基因组工程的重要组成部分,它提供了从整体上分析细胞表达状况的信息,而且为了解与某些特殊生命现象相关的基因表达提供了有力的工具,对于基因调控以及基因相互作用机理的探讨有重要作用[15~19]。人类基因组编码大约100000个不同的基因,因此,具有监测大量mRNA的实验工具很重要。基因芯片技术可清楚地直接快速地检测出以1∶300000水平出现的mRNA,且易于同时监测成千上万的基因。目前,已能够在1.6cm2面积上合成和阅读含400000个探针的阵列,可监测10000个基因的表达状况。斯坦福大学的Brown用制备的酵母cDNA芯片,获得酵母在不同细胞周期状态以及在热休克冷休克处理后其2473个基因的表达图谱[19],较直观地反应不同条件和状态下基因转录调控水平,从而为寻找基因调控的机理提供了一条有效的途径。
定量监测大量基因表达水平在阐述基因功能、探索疾病原因及机理、发现可能的诊断及的靶基因等方面具有重要价值的。Derisi等选用来自恶性肿瘤细胞系UACC903中的1161个cDNA克隆制成芯片,通过比较正常和肿瘤细胞的表达差异,发现在恶性肿瘤细胞中P21基因处于失活或关闭状态,但在逆转的细胞系中呈高表达。Golub等应用cDNA 芯片检测基因表达的差异进行癌症的分类,成功地区分出急性髓细胞性白血病(AML)和急性淋巴细胞性白血病(ALL),预期这种方法还能诊断出新的白血病种类。在炎症性疾病类风湿性关节炎(RA)和炎症性肠病(IBD)的基因表达研究中,可检测出炎症疾病诱导的基因如TNF-α、IL或粒细胞集落刺激因子,同时发现一些以前未发现的基因如HME基因和黑色素瘤生长刺激因子。目前,大量
涌现的人类ESTs给cDNA微阵列提供了丰富的序列资源,数据库中ESTs代表了人类基因,因此ESTs微阵列可在缺乏其它序列信息的条件下用于基因发现和基因表达检测,从而加快人类基因组功能分析的进程。
2、基因多态位点及基因突变的检测
现有大量实例说明,基因组多样性的研究对阐明不同人群和个体在疾病的易感性和抵抗性方面表现出的差异具有重要意义,一旦对基因组的编码序列进行系统筛查,就有可能找出与疾病易感性有关的大量基因变异。基因芯片技术可大规模地检测和分析DNA的变异及多态性。Wang等应用高密度基因芯片对2.3Mb人类基因的SNP 进行筛查,确定了3241个SNPs位点,显示出大规模鉴定人类基因型的可能。Lipshutz等人采用含18,495个寡核苷酸探针的微阵列,对HIV-1基因组反转录酶基因(rt)及蛋白酶基因(pro)的高度多态性进行了筛选,这些变异将导致病毒对多种抗病毒药物包括AZT、ddI、ddC等表现出抗性,因此rt与pro的变异与多态性的检测具有重要的临床意义。随着大量疾病相关基因的发现,变异与多态性分析将在疾病的诊断与治疗方面体现出越来越重要的价值。Affymetrix公司已将P53 基因的全长序列和已知突变的序列制成探针集成在芯片上,可对与P53 基因突变相关的癌症进行早期诊断。Hacia等采用含96600个20聚寡核苷酸高密度阵列对遗传性乳腺和卵巢癌BRCA1基因3.45kb的第11个外显子进行杂合变异筛选,结果准确诊断出15个已知变异的患者样品中的14个,而在20个对照样品中未发现1例假阳性,表明DNA芯片技术在某些疾病相关基因可能的杂合变异的检测方面所具有的灵敏度与特异性是令人满意的。
芯片技术中杂交测序技术(sequencing by hybridization,SBH)是一种新的高效快速测序方法,是基因芯片的另一重要应用,其原理与芯片检测多态位点相类似,即通过与一组已知序列的核酸探针杂交进行序列测定,用荧光标记的待测序列与基因芯片上对应位置的核酸探针产生互补配对时,通过确定荧光强度最强的探针位置,获得一组序列互补的探针序列,据此可重组出靶核酸的序列。用含65536个8聚寡核苷酸的微阵列,采用SBH技术,可测定200bp长DNA序列,采用67108864个13聚寡核苷酸的微阵列,可对数千个碱基长的DNA测序。
3、基因芯片技术帮助改善急性白血病的诊断和治疗
患急性髓性白血病(AML)的儿童和*进行基因芯片分析能显著改善诊断的精确度、对这种疾病主要遗传亚型在分子水平的预后,并有助于更好地治疗这种疾病。St. Jude Children’s Research Hospital的研究人员的这一发现在Blood期刊上有详细报道。AML是骨髓造血干细胞(HSCs)或骨髓细胞的祖细胞发生了癌变。基因微矩阵技术(芯片技术)运用含基因探针的芯片来同时测定正常细胞和患病细胞遗传物质样品中几千个特定基因的表达水平。HSCs是骨髓中的始祖细胞,它们有可能分化成不同类型的血细胞。而祖细胞起源于HSC并只能产生特定类型的血细胞。对儿童和*的研究发现,每种主要的AML预后亚型的白血病细胞都有独特的基因表达图谱。精确的图谱取决于导致白血病细胞形成和生长的根本的遗传突变,这些突变与白血病细胞中的一系列基因的过表达或低表达有关(与正常白细胞中基因表达水平相比)。预后亚型是依据治疗后一定的预后指标对不同形式的AML的分类,每一类
都有一定的特征可以预测治疗结果。值得注意的是,这项研究还证明儿童白血病中的这种基因表达谱也能够用来精确地诊断与*相对应的白血病。因此,从儿童AML中获得的信息有助于促进对发病率相对较高的*AML的了解。据的第一作者James Downing博士说,AML亚型图谱的鉴定非常重要,因为某个特定病人的治疗前景取决于他或她的亚型是是否容易治疗。例如,PML-RAR亚型的预后效果较好而其它亚型预后则较差。“基因表达图谱也有助于我们了解每种AML亚型的病因,这是迈向新药开发和更有效的治疗方法的重要一步,”他说。而另一个发现就是一种表达谱可以用于鉴别一种AML亚型,这种亚型是由于任一种白细胞中发生了MLL嵌合融合基因突变。MLL基因的部分复制产生的表达谱与MLL 嵌合融合基因突变导致的表达谱完全不同。这表明同一基因的两种不同的突变以两种不同的机制导致AML的发生。“依据基因表达谱的不同来精细区别不同的AML亚型,就如同创造一部字典,”Downing说。“这种情况下,一种基因表达谱确定了一个人患有特定的AML亚型,而具有另一个表达谱的人则患有一个不同类型的AML。”Downing说,“知道了一个病人患哪个AML亚型就更易制订最好的治疗方案并确定这种治疗方法的成功率。这项研究将有助于我们理解AML内在的不同的病因。”
4、基因芯片技术诊断病毒性肝炎
随着DNA结合蛋白研究的深入,受组合化学、抗体库和随机噬菌体肽库技术的启发,人们构建了随机核酸库并从中筛选出与靶蛋白特异结合的核酸配基,此技术称为SELEX。与蛋白类抗体相比,此配基具有许多有点:作用的靶分子范围更广,配基与靶分子的结合能力与特异性更强,动力学参数可依体外诊断条件的要求而改变,不受抗原毒性和免疫原性的限制,特异性和亲和力不受组织或样本中非靶抗原的干扰,体外人工合成实现标准化生产,合成时可随意连接其他功能基因和分子等。目前已从核酸库中筛选出各种与蛋白、核酸、小分子肽、氨基酸、有机物、金属离子等特异性结合配基,并应用于临床治疗和诊断。凡涉及抗体的诊断领域,几乎均可用核酸配基替代。选择针对肝炎免疫应答过程中特异性标志物及相关反应蛋白筛选核酸配基,人工合成后结合于固相载体,制作基因芯片,即可实现芯片技术的病毒免疫标记物及免疫应答过程中的细胞因子、细胞周期、细胞凋亡等免疫学检测。
三、
基因芯片技术虽有诸多优点,但要成为实验室或临床可以普遍采用的技术目前尚有一些关键问题亟待解决,如如何提高芯片的特异性,简化样本制备和标记操作程序,增加信号检测的灵敏度和高度集成化样本的制备,基因扩增,核酸标记及检测仪器的研制和开发等,已成为当今国内外研究的热点。
[]
[1]张思仲.人类基因组的单核苷酸多态性及其医学应用
[2]Marshall A and Hodgson J. DNA chips: An array of possibilities
上一篇:小儿腹股沟疝的非手术治疗探究
下一篇:浅论临终病人的护理











