植物抗病基因工程研究进展

来源:岁月联盟 作者:贺鸣 时间:2015-01-02
  2.3.1病程相关蛋白(PR)基因。病程相关蛋白(PR)基因是目前的研究热点,该基因对植物的抗病性,尤其是系统获得性抗性具有重要作用。近年来陆续发现的PR蛋白有:几丁质酶CHI、β-l,3葡聚糖酶GLU、类甜蛋白等。其中,又以CHI和GLU的研究最多。几丁质酶CHI和β-l,3葡聚糖是大多数植物病原真菌细胞壁的主要成分,CHI和GLU具有降解病原真菌细胞壁的作用,纯化的几丁质酶和葡聚糖酶单独或同时存在都能抑制病原真菌的生长,从而抑制病原真菌的侵染。现已从菜豆、水稻、烟草、拟南芥、油菜和甜菜等中克隆到几丁质酶基因,从大豆、烟草、大麦和豌豆等作物中克隆到葡聚糖酶基因。由菜豆几丁质酶基因单独转化、烟草葡聚糖酶基因与菜豆几丁质酶基因联合转化得到的转基因植株分别对烟草立枯丝核菌和烟草赤星病有较高抗性[18]。一些葡聚糖酶基因也从大豆、大麦、烟草等作物中分离,与合适的启动子构建重组质粒后转化植物获得了转基因植物。Zhu等[19]报道水稻碱性几丁质酶基因和苜蓿葡聚糖酶基因的转基因烟草对烟草蛙眼病表现出了较只转一种基因的烟草更强的抗性。
  2.3.2溶菌酶基因。溶菌酶具有几丁质酶和葡聚糖酶的双重活性,对植物病原菌表现出很强的裂解活性。在已获得的T4噬菌体溶菌酶基因的转基因马铃薯中,虽然只有低水平的合成表达,但能有效地分泌到由胞间隙中,明显提高了对马铃薯黑胫病的抗性。
  2.4其他生物的抗菌蛋白基因
  自然界中的各种生物对病原菌都有其自身的防御机制和相应的抗菌物质,这为人们寻找抗菌蛋白基因提供了一个广阔空间。目前,人们已从昆虫、动物、细菌、真菌中分离到许多抗菌蛋白,将其笼统称为“抗菌肽”。
  抗菌肽主要是通过形成离子通道直接破坏细胞膜来杀灭病原菌,因此病菌很难对基产生抗性。加之抗菌肽具有抗菌谱广、分子量小、基因操作容易等特点,因此分离和克隆这些抗菌肽基因并将其转入植物中是当前抗真菌基因工程的一个主要研究内容,植物转抗菌肽基因工程的研究已成为植物抗病育种的重要途径。Yevtushenko等[20]曾将Cecropin基因导人烟草中,发现可降低烟草真菌病害引起的死亡率。
  3转化方法
  自1983年第一例转基因植物-烟草在美国获得成功以来[20],经过科学家20多年的探索,转基因技术日臻成熟,已形成了以农杆菌转化和基因枪转化技术为主体的两大植物转化系统。其中,农杆菌介导的基因转移占绝大多数,成功率最高。基因枪法也是主要的转化方法,其他的转化方法也都成功地得到了转基因植株,各具特点。
  3.1农杆菌介导法
  第一例转基因植物就是用农杆菌介导法完成的。农杆菌介导的基因转化方法是迄今最可靠、最有效的转化方法。
  根癌农杆菌含有Ti 质粒,Ti 质粒上的T-DNA 可以插入到植物基因组中,诱导宿主植物中瘤状物的形成。因此,将外源目的基因插入到T-DNA 中,借助Ti 质粒的载体作用,使目的基因在宿主植物中整合、表达。
  农杆菌介导法主要以植物的分生组织和生殖器官作为外源基因导入的受体,通过真空渗透法、浸蘸法及注射法等方法使农杆菌与受体材料接触,以完成可遗传细胞的转化,然后利用组织培养的方法培育出转基因植株,并通过抗生素筛选和分子检测鉴定转基因植株后代。农杆菌介导法又可根据其受体材料不同分为原生质体共培养法、叶盘法和创伤植物感染法,其中叶盘法在许多植物上得到广泛应用。
  3.2基因枪法
  该法又称粒子轰击,高速粒子喷射技术或基因枪轰击技术,是由美国康奈尔大学生物化学系John.C.Santord等于1983年研究成功,其基本原理是利用亚精胺、聚乙二醇的粘附作用将外源DNA包被在微小的金粒或钨粒表面,然后在高压的作用下微粒被高速射入受体细胞或组织;并在1987年,Klein[21]首先报道了应用此技术将烟草花叶病毒RNA吸附到钨粒表面,轰击洋葱表皮细胞,经检测发现病毒RNA能进行复制,并以同样技术将氯霉素乙酰转移酶基因导入洋葱表皮细胞。基因枪法的操作对象可以是完整的细胞或组织,突破了基因转移的物种界限,也不必制备原生质体,实验步骤比较简单易行,具有相当广泛的应用范围。现在,该技术已在烟草、水稻、小麦、黑麦草、甘蔗、棉花、大豆、菜豆、洋葱、番木瓜、甜橙、葡萄等多种作物上试用成功。
  3.3其他方法
  花粉管通道法最早由周光宇等[22]提出,其基本原则是利用开花植物授粉后形成的花粉管通道使外源DNA 沿着花粉管进入胚囊,转化尚不具备正常细胞壁的卵、合子或早期胚胎细胞的方法。化学诱导法的主要原理就是聚乙二醇、多聚-L-鸟氨酸、磷酸钙在pH值较高的条件下诱导原生质体摄取外源DNA分子[23]。电穿孔法又称电激法,首先由Neumann[24]提出,即在高压电脉冲作用下,在新鲜分离的原生质体的质膜上形成可逆性的瞬间通道,从而发生外源DNA的摄取。此外,还有脂质体转化法、低能离子束法、病毒载体转化法、转座子介导法和浸泡法等。
  4植物抗病基因工程的前景展望
  植物基因工程是细胞水平和分子水平上的遗传操作,其最大优点是能地利用人们所感兴趣的外源基因使工作更具目的性,给植物抗病育种提供了一条有用的途径。
  但是抗病基因所介导的抗病性具有高度专化性,只针对一种病害的一个或几个小种,抗病谱范围比较窄;而导入防卫反应基因的转基因植株大多表现出部分抗性。因此,多数转单基因的抗病植物,抗病机制单一,抗多病害或抗多小种的能力低,一旦病原菌群体发生变化,抗病性就可能被克服。因此植物抗病基因工程的趋势是创建持久、广谱的抗病性。
  综上所述,植物抗病基因工程要获得深入发展,加强相应的基础研究是十分重要的。病原菌致病手段多种多样,植物的防卫机制也是多方面的,随着植物抗病机制的深入研究,抗菌基因工程的策略和手段也会得到不断拓宽,必将在植物病害防治中发挥更大的作用。
  5参考文献
  [1] 宋从凤,王金山.植物抗病基因工程策略及其前景[J].世界农业,2001(10):39-41.
  [2] HAMILTON R I.Defenses triggered by previous invaders:viruses[M].New York:Academic Press,1980:279-303.
  [3] DESLANDES L,OLIVIER J,PEETERS N,et al. Physical interaction between RRS1-R,a protein conferring resistance to bacterial wilt,and PopP2,a type III effector targeted to the plant nucleus[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(13):8024-8029.
  [4] GODIARD L,SAUVIAC L,TORII K U,et al.ERECTA,an LRR receptor-like kinase protein controlling development pleiotropically affects resi-stance to bacterial wilt[J].The Plant Journal,2003,36(3):353-365.