肝癌细胞HepG2与肝癌患者树突状细胞融合瘤苗的体外效应

来源:岁月联盟 作者: 时间:2010-07-12

                                 作者: 张红梅,张利旺,刘文超,潘伯荣,斯晓明,任军

【关键词】  细胞融合

    Effect of a vaccine prepared by fusion of HepG2 cells with dendritic cells from patients with hepatocellular carcinoma in vitro

  【Abstract】  AIM: To investigate the fusion ability of  hepatocellular carcinoma (HCC) patientderived dendritic cells (DCs) with HCC cells (HepG2) in inducing autologous T lymphocytes to elicit specific immunity against HCC in vitro. METHODS:  Peripheral blood mononuclear cells (PBMCs) from HCC patients were isolated by blood separator. In the presence of recombinant human granulocyte/macrophageclone stimulating factor (rhGMCSF) and interleukin4 (rhIL4), PBMCs were cultured in vitro for 1 week to induce DCs. The expression of cell surface molecules was assessed by flow cytometry. The fusion cells of DCs with HepG2 cells (DCs/HepG2) were achieved by polyethylene glycol (PEG). The ability of DCs/HepG2 to stimulate the proliferation of autologous T lymphocytes was evaluated by MTT assay and the specific lysis of HepG2 by DCs/HepG2 induced cytotoxic T lymphocytes (CTLs) was detected by cytotoxicity test. RESULTS:  After fusion, DCs/HepG2 highly expressed surface molecules, including CD83 90.4%, CD80 87.7%, CD86 84.4% and HLADR 98.5%. The fusion cells had a remarkably greater ability to stimulate the proliferation of autologous T lymphocytes in comparison with HepG2 and DCs. The DCs/HepG2activated CTLs showed a potent specific lysis to HepG2 cells, which was (63.5±4.6)% with an effectortarget ratio 20∶1. CONCLUSION:  The fusion of DCs derived from HCC patients with HepG2 cells can effectively stimulate autologous T lymphocytes to elicit specific antitumor immunity against HCC and may serve as a promising vaccine for immunotherapy of HCC.

  【Keywords】 dendritic cells; cell fusion;  carcinoma, hepatocellular; immunotherapy

  【摘要】 目的: 将肝细胞癌(HCC)患者树突状细胞(DCs)与肝癌细胞HepG2融合制备瘤苗,检测其体外诱导同源T细胞产生特异性抗HepG2的免疫效应. 方法: 以血细胞分离机分离富集HCC患者外周血单个核细胞(PBMCs),应用重组人粒细胞/巨噬细胞集落刺激因子(rhGMCSF)、白细胞介素4(rhlL4)体外诱导培养DCs;聚乙二醇融合DCs与肝癌细胞HepG2, MTT法测定融合细胞(DCs/HepG2)刺激同源T淋巴细胞增殖分化能力,细胞毒性实验检测DCs/HepG2诱导细胞毒性T淋巴细胞(CTL)对HepG2的特异性杀伤作用. 结果: 融合细胞DCs/HepG2高表达成熟DC表面分子,其中CD83 90.4%, CD80 87.7%, CD86 84.4%, HLADR 98.5%;其刺激同源T淋巴细胞增殖的能力显著高于HepG2和DCs;DCs/HepG2活化的CTL对HepG2具有显著杀伤作用,其杀伤率为(63.5±4.6)%(效靶比例为20∶1). 结论: HCC患者外周血DC融合HepG2细胞可有效诱导同源T淋巴细胞产生特异性抗HCC免疫效应,可能成为HCC免疫的有效途径.

  【关键词】 树突细胞;细胞融合;癌,肝细胞;免疫疗法
 
  0引言

  肝细胞癌(hepatocellular carcinoma, HCC)因缺乏特异性肿瘤抗原且抗原性弱,其生物治疗相对困难. 树突状细胞(dendritic cells, DCs)是体内功能最强的专职抗原提呈细胞,可摄取、加工处理和提呈抗原,并有效激活T细胞产生抗原特异性免疫应答[1]. 将DC与肝癌细胞融合,理论上可实现DC对肝癌细胞抗原最充分的提呈,有望获得令人满意的肝癌生物治疗效果. 我们利用细胞融合技术将DC与肝癌细胞融合,制备融合细胞疫苗,探讨其生物学特性及抗肿瘤活性,为肝癌DC疫苗临床应用提供实验基础及相关资料.

  1材料和方法

  1.1材料

  RPMI1640培养液、T细胞尼龙毛柱购自美国Gibco公司;Xvivo15无血清培养液购自美国Cambrex Bioscience公司;淋巴细胞分离液、细胞膜荧光染料PKH26,PKH67,500g/L聚乙二醇(polyethyleneglycol,PEG)为美国Sigma公司产品;重组人GMCSF,IL4为美国PeproTech公司产品;新型重组人肿瘤坏死因子nrhTNF购自第四军医大学生物技术中心;ELISA检测试剂盒购自美国R&D公司;抗人FITCCD80, HLADR mAb与抗人PECD86, CD83 mAb均为美国BD PharMingen公司产品.
 
  1.2方法

  以血细胞分离机分离富集HCC患者外周血单个核细胞(PBMCs),淋巴细胞分离液密度梯度离心纯化,无血清Xvivo15培养液重悬细胞,置于24孔聚苯乙烯培养板,贴壁法移去悬浮细胞,贴壁细胞加入rhGMCSF(终浓度100 μg/L), rhIL4(终浓度10 μg/L),于37℃, 50 mL/L CO2条件下培养5 d,补加上述细胞因子,7 d收获DCs. 上述悬浮细胞采用尼龙毛柱分离法分离T细胞,于含IL2(终浓度20 kU/L)的无血清培养液Xvivo15中培养. 人肝癌细胞HepG2和白血病细胞K562为我室保留株,于含100 mL/L胎牛血清的RPMI1640培养液中常规培养. HepG2细胞(经30 Gy γ射线照射)与DCs分别以红色荧光染料PKH26和绿色荧光染料PKH67染色(染色过程按产品说明书进行),1∶3比例混合,37℃水浴中缓慢加入预热的PEG+DMSO, 90 s内完成,加入10倍体积RPMI1640终止反应;离心后细胞重悬于Xvivo15培养液中,加入前述细胞因子并补加1 kU nrhTNFα(终浓度为1 MU/L),37℃, 50 mL/L CO2培养24 h,收集贴壁生长细胞,倒置显微镜、荧光显微镜观察细胞形态. 以PECD80, CD83, FITCCD8, HLADR mAb标记DCs,具体方法: 分别收集融合前DCs,融合细胞(未经荧光染料标记),调整细胞密度5×109/L,各取50 μL,加入1∶20灭活兔血清10 μL, 4℃封闭10 min,分别加入上述mAb, 4℃避光30 min后,PBS洗2次,流式细胞仪检测;同时检测HepG2细胞(PKH26)与DCs(PKH67)融合效率.
 
  1.2.1DC融合细胞IL12分泌测定融合24 h后收集培养上清,ELISA法测定上清中IL12含量(按说明书操作),以未融合DCs和HepG2细胞为对照,每组设6复孔.
 
  1.2.2DC融合细胞刺激自体T淋巴细胞增殖实验将融合细胞、DCs(30Gy γ射线照射)分别与T细胞(1×109/L)以1∶10,1∶30,1∶100比例混合,于96孔板培养5 d,每组设3复孔,MTT显色法于波长490nm处检测吸光度(A)值,T细胞增殖以刺激指数(SI)表示,SI=刺激细胞孔A490值/不加刺激细胞孔A490值.
 
  1.2.3DC融合瘤苗诱导细胞毒性T淋巴细胞(CTL)效应T细胞(1×109/L)分别与DCs/HepG2融合瘤苗, DCs, HepG2 (1×108/L)在IL2条件下(20 kU/L)共培养5 d,收集效应T细胞,调节细胞密度l×108/L,与HepG2(1×107/L)共培养24 h后,ELISA法测定培养上清中IFNγ含量(按说明书操作);另收集上述效应T细胞,调节细胞密度2×108/L,分别与HepG2 (1×107/L), K562 (1×107/L)共培养24 h, MTT法测定效应T细胞对HepG2, K562的细胞毒性,其杀伤率(%)=[1-(A实验孔-A效应细胞对照孔)/A靶细胞对照孔]×l00.

  统计学方法: 结果以x±s表示,采用t检验(SPSS11.0), P<0.05认为有统计学差异.

  2结果

  倒置显微镜下,DCs体积较大,可见典型树枝状突起;HepG2细胞略小,贴壁生长;融合后可见典型双核细胞(图1). 诱导d 7, DCs表达CD80 22.6%, CD86 13.5%, HLADR 32.4%, CD83低表达,仅0.34%;与HepG2融合后,上述分子表达明显升高,分别为CD80 87.7%, CD86 84.4%, HLADR 98.5%, CD83 90.4%,提示融合细胞具有成熟DC特征. 荧光显微镜下检测DCs/HepG2细胞融合率约为30%;流式细胞仪检测融合细胞(PKH26与PKH67双阳性)约占38.2%.

  2.1IL12分泌融合24 h后,DCs/HepG2融合细胞、单纯DCs及单纯HepG2细胞分泌IL12分别为(386.2±31.8), (71.1±38.6), (13.2±5.2) ng/L,融合细胞组分泌IL12明显高于单纯DCs及单纯HepG2组(n=6, P<0.01).

  2.2T细胞增殖以未加刺激细胞组作为空白对照,DCs/HepG2融合细胞致敏的T细胞增殖明显,在各浓度的刺激指数(SI)均显著高于DCs组及HepG2组(n=3, P<0.01,图2).

  2.3CTL效应ELISA结果显示DCs/HepG2,单纯DCs及单纯HepG2刺激的T细胞与HepG2共培养24 h后,上清中INFγ含量分别为(273.3±70.7), (142.6±39.2), (92.0±22.2) ng/L, DCs/HepG2组明显高于对照组(n=3, P<0.01). 同时,DCs/HepG2融合瘤苗刺激的T细胞对HepG2细胞杀伤率均明显高于对照组(n=3, P<0.05); DCs/HepG2, DCs或HepG2刺激的T细胞对非肝癌细胞K562均无明显杀伤活性,提示DCs/HepG2融合瘤苗可有效诱导产生HepG2特异性CTL.

  3讨论

  原发性肝癌是我国常见恶性肿瘤之一,其中90%为HCC,手术切除是目前唯一可能根治的疗法,但术后5 a复发率高达40%~60%,复发转移已成为HCC患者长期生存的主要障碍[2]. 肿瘤疫苗具有激活免疫系统、诱导特异性CTL杀伤肿瘤细胞的功能,可用于预防HCC术后复发转移. 作为肿瘤疫苗研究热点之一的DC,是目前已知功能最强的抗原提呈细胞,高水平表达抗原提呈过程必需的MHC抗原、共刺激分子,可获取、加工肿瘤抗原,将其呈递至T淋巴细胞,诱导产生肿瘤抗原特异性CD4+和CD8+效应T细胞. 目前已报道多种DC疫苗制备策略,主要包括将肿瘤相关抗原基因导入DC[3-4],应用合成抗原肽、肿瘤抗原提取物、抗独特型抗体或细胞性肿瘤抗原致敏DC[5-6]等. 但多数肿瘤的相关抗原并不明确,且有效的T细胞免疫应答需针对不同肿瘤抗原的多个T细胞克隆协同作用. 因此,以单一肿瘤抗原刺激DC进行免疫,一方面特异性肿瘤抗原难以获取,另一方面未必激活有效的CTL,且技术条件要求较高,不宜临床推广. 而DC与肿瘤细胞融合策略[7],理论上可将全部肿瘤抗原结合于DC,使其既具有肿瘤细胞的全部抗原性,通过DC抗原提呈功能为MHCI类分子复合体提供连续的内源性肿瘤抗原[8],又具有激活T细胞的功能.

  我们以HCC患者外周血PBMC为来源诱导DC,经rhGMCSF, rhIL4体外培养1 wk后,与肝癌细胞HepG2融合. 流式细胞仪检测显示DC/HepG2融合细胞表达高水平HLADR, CD83, CD80, CD86等成熟DC功能分子,明显高于融合前DC表达上述分子的水平;同时,融合细胞IL12分泌量明显增加,提示细胞融合策略可促进DC成熟,使其获得强大的抗原提呈功能和激活T细胞的能力. 混合淋巴细胞反应证实融合细胞可有效刺激同源T淋巴细胞增殖,显著高于单纯DC和HepG2的刺激能力. 活化T细胞分泌IFNγ的水平可作为细胞毒性效应的检测指标之一,我们采用ELISA法测定DC/HepG2融合细胞致敏T细胞分泌的IFNγ,发现其分泌量显著高于对照组;体外杀伤试验显示融合细胞诱导产生的CTL对HepG2具有显著的特异杀伤作用. 我们的结果表明,HCC患者DC与HCC细胞融合,可有效诱导特异性抗HCC免疫应答,有望成为治疗和预防HCC转移复发的新途径,该方法对未明确特异抗原的肿瘤进行DC主动性免疫治疗也具有很强的实用价值.

  【】

  [1] Yao V, Platell C, Hall JC. Dendritic cells [J]. ANZ J Surg, 2002,72(7):501-506.

  [2] Cai RL, Meng W, Lu HY, et al. Segregation analysis of hepatocellular carcinoma in a moderately highincidence area of East China [J]. World J Gastroenterol, 2003,9(11):2428-2432.

  [3] Zhou Y, Bosch ML, Salgaller ML. Current methods for loading dendritic cells with tumor antigen for the induction of antitumor immunity [J]. J Immunother, 2002,25:289-303.

  [4]马俊芬,黄幼田,赵明耀,等. 转染pcDNA3hCEA的人树突状细胞抑制MGC803裸鼠移植瘤的生长[J]. 第四军医大学学报,2005,26(19):1802-1804.

  [5] Kao JY, Zhang M, Chen CM, et al. Superior efficacy of dendritic celltumor fusion vaccine compared with tumor lysatepulsed dendritic cell vaccine in colon cancer  [J]. Immunol Lett, 2005,101(2):154-159.

  [6]  Koido S, Ohana M, Liu C, et al. Dendritic cells fused with human cancer cells: Morphology, antigen expression, and T cell stimulation [J]. Clin Immunol, 2004,113(3):261-269.

  [7]Jantscheff P, Spagnoli G, Zajac P, et al. Cell fusion: An approach to generating constitutively proliferating human tumor antigenpresenting cells [J]. Cancer Immunol Immunother, 2002,51(7):367-375.

  [8] Matsumoto S, Saito H, Tsujitani S, et al. Allogeneic gastric cancer celldendritic cell hybrids induce tumor antigen (carcinoembryonic antigen) specific CD8+ T cells  [J]. Cancer Immunol Immunother, 2005;published online