浅析某水电站大坝裂缝存在对工程正常使用的影响

来源:岁月联盟 作者:佚名 时间:2010-08-23

摘要:目前国内砌石拱坝中出现裂缝的情况较多,大多数拱坝在出现裂缝后通常是对裂缝进行灌浆处理后继续运行,并且极少拱坝出现失事现象。本文从裂缝产生的成因及裂缝经过处理后对大坝正常运行影响方面进行了浅显的分析。

关键词:砌石拱坝 裂缝 成因 应力分析 超静定

 


 

2) 裂缝成因分析

为分析裂缝产生的原因,了水库空库+温降(-5℃)(设计温降工况为多年平均日最低

气温1月份为7.7℃)运行工况的坝体应力情况,由于建筑大坝用的砼水灰比达到0.69(试验结果),大大高于规范要求的0.5~0.6的要求,坝体的线胀系数取0.0000090(原设计取0.0000080),封拱温度按实际时平均温度选取,计算成果见表1。

气温骤降(-5.0℃)+空库时坝体主应力计算成果

1

高 程

左 坝 肩

右 坝 肩

上 游

下 游

上 游

下 游

271.2

-2.71

-2.25

-2.54

-2.16

266

-2.74

-2.03

-2.65

-2.08

261.28

-2.25

-1.73

-2.17

-1.83

256.57

-1.54

-1.06

-1.48

-0.97

251.86

-1.18

-0.71

-1.27

-0.65

247.14

-0.92

-0.72

-1.17

-0.68

由表1中知,在气温骤降(-5℃,大大低于设计温度7.7℃)及空库情况下,两坝肩的拉应力较大,最大值为2.74Mpa[2R,-7C],且拉应力区范围较广,两坝肩拉应力呈全断面分布,且上游面普遍大于下游面,而且可以看出,计算结果与实际产生裂缝位置较为吻合,由此,可得出裂缝产生的原因。

引起坝体顶部竖向裂缝的主要原因是温度荷载,即拱坝在空库(或低水位)+温降情况下运行是产生坝顶裂缝的最不利荷载组合,而且该段坝体施工时最高温度达27.1℃,平均温度达到21℃,而短历时寒潮最低温度为-2~-5℃,最大温差超过20℃,而且坝顶厚度又较薄,坝体温度很快降至当时气温,实际产生的拉应力往往会大于计算值,从而在寒潮作用下产生近坝顶竖直裂缝。

3、裂缝处理方案

裂缝产生后,设计人员根据踏勘情况,提出了裂缝处理方案,裂缝将采用化学材料嵌缝和水泥灌浆相结合的处理方法。

灌浆施工流程为:凿槽嵌缝钻孔→冲洗→灌浆→封孔。

凿槽:对坝体裂缝进行凿槽,凿槽成三角形,槽上口宽4cm左右,槽深3~4cm,坝体裂缝两端各延伸0.5cm;

嵌缝:嵌缝采用环氧树脂,先对坝体裂缝凿槽内刷一道环氧树脂液,然后用配制好的环氧树脂嵌缝,用榔头敲击嵌补的环氧树脂并用刮刀刮平;

钻孔:在大坝下游面沿裂缝两侧交错水平钻斜孔,孔距2.0m,孔径为φ40;

冲洗;采用高压水对钻孔进行冲洗,并检查各孔是否串通,冲洗压力为灌浆压力的80%;

灌浆:灌浆时空气温度不大于10℃,灌浆采用孔口循环灌浆法,灌浆压力为0.25MPa,灌浆材料为525#普通硅酸盐水泥;

封孔:从大坝底部往上灌浆,待全部孔出浆且堵塞全部孔后不吸浆才结束灌浆进行封孔。


4、裂缝存在对工程正常使用的影响
左右坝肩坝顶竖直裂缝一般冬开夏闭,随气温的年变化而开合,随库水位高低变化而合开,水库在低水位或空库时,又遇更冷的气温时原有裂缝往往扩展延伸或在其他部位又发生新的裂缝,因此,还必须注意两坝肩发生新裂缝的可能性。

这种裂缝仅相当于水库在低水位或空库运行时恰缝冬季,坝体近坝头处又分了一条横缝,没有灌浆,而此时库水位又低,漏水问题不突出,随着库水位的上升和气温升高,该裂缝又会自动闭合,即使出现渗水,也不会影响到其传递压应力的功能,拱坝还能继续工作,该种裂缝又称“活缝”。这种裂缝对坝体正常工作的危害性不大。

另外,考虑到拱坝是一种高次超静定结构,它在周边的严格约束下,对于超载或变形的反映十分敏感,局部应力集中立即会引起开裂,然而这种开裂也可以说是结构放松约束来调整内力以适应变化的正常反映。拱坝在破坏以前必定存在一个不断开裂,不断静定化的过程。在尚未达到严重开裂以前,拱坝高次超静定结构的潜力没有完全发挥,因而不会影响坝的安全运行。

为进一步分析裂缝存在对工程正常使用的影响,对拱坝在灌浆前、后分别作应力分析,工况增加空库+温降和空库+温升两种工况(灌浆后)。应力分析时,封拱温度选择:灌浆前封拱温度选择设计封拱温度+裂缝宽度相对应的温度升高值(由于坝体的线胀系数为0.0000090,简单认为坝体裂缝1.0mm相当于坝体封拱温度升高9.0℃);灌浆后封拱温度选择灌浆时的温度,裂缝灌浆前、后的拱坝应力计算成果见表2、表3。其中裂缝灌浆前由于温降和低水位工况时坝体收缩,裂缝产生后,坝体应力已重新分布,所产生的拉应力大部分释放掉了,所计算得到的应力成果不能反映坝体的实际应力分布,因此裂缝灌浆前不计算空库工况的应力。

拱坝应力计算成果表(主应力)(裂缝灌浆前)

表2                                                                 单位:MPa

工况
 上游坝面
 下游坝面
 
最大主拉应力
 最大主压应力
 最大主拉应力
 最大主压应力
 
1、正常水位+温降
 1.44[9R,0C]
 1.64[5R,0C]
 1.16[1R,-9C]
 2.53[6R,4C]
 
2、死水位+温降
 1.62[1R,-9C]
 0.68[6R,0C]
 1.35[1R,-9C]
 1.28[6R,4C]
 
3、死水位+温升
 0.41[4R,0C]
 1.98[9R,0C]
 0.66[9R,0C]
 1.60[8R,0C]
 
4、校核洪水位+温升
 1.10[7R,-3C]
 1.23[2R,-1C]
 0.09[2R,2C]
 2.69[6R,4C]
 

拱坝应力计算成果表(主应力)(裂缝灌浆后)

表3                                                                 单位:MPa

工况
 上游坝面
 下游坝面
 
最大主拉应力
 最大主压应力
 最大主拉应力
 最大主压应力
 
1、正常水位+温降
 1.13[9R,0C]
 1.34[5R,0C]
 0.66[1R,-9C]
 2.16[7R,3C]
 
2、死水位+温降
 1.03[1R,-8C]
 0.79[9R,1C]
 0.84[1R,-9C]
 0.80[6R,4C]
 
3、死水位+温升
 0.54[2R,0C]
 2.28[9R,0C]
 0.99[6R,4C]
 1.63[8R,0C]
 
4、校核洪水位+温升
 0.85[8R,-2C]
 1.70[1R,-9C]
 0.23[2R,8C]
 2.34[7R,3C]
 
5、空库+温升
 0.52[2R,0C]
 3.23[9R,0C]
 1.48[9R,0C]
 1.44[8R,0C]
 
6、空库+温降
 0.99[1R,-8C]
 1.05[9R,1C]
 0.78[1R,-9C]
 0.81[5R,2C]
 

由上述两表计算表明,裂缝灌浆前,在各种工况局部出现了应力超标现象,而裂缝经过灌浆处理后,拱坝应力均满足规范规定的要求(拱冠梁1.5Mpa,拱及其它部位1.40Mpa),因此,该裂缝应进行灌浆处理,以满足工程正常运行要求。

5、结  语
  由温降+低水位(空库)运行为主要原因而产生的坝顶近竖向裂缝是国内砌石拱坝中出现的最常见裂缝,这一方面在拱坝设计中对某些不利荷载难于确切预计,坝的材料特性和坝基的地质条件难于完全掌握,同时也说明拱坝可以通过自身结构调整,利用高次超静定结构这种安全储备来弥补设计的不足,开裂正是这种自身结构调整的早期征兆。对这种裂缝,只要重视监控检查,掌握其变化,可以适时修补,继续运用。据统计,在全国1700多座已建的拱坝中,真正导致水库溃坝失事的只有2座,可见,拱坝与其他坝型相比,其具有良好的安全性。因此,我们对拱坝出现裂缝情况要辨证的看待,既不能掉于轻心,也不要过于紧张,重要的是要客观分析裂缝产生的原因及根据原因提出解决问题的方案。

 

图片内容