基因敲除在肾素-血管紧张素系统研究中的应用

来源:岁月联盟 作者: 时间:2010-07-12
关键词: 基因 肾素-血管紧张素系统 高血压 

  肾素-血管紧张素系统(RASA)在维持正常血压和电解质平衡中起着十分重要的作用[1],也是高血压防治研究的中心环节[2]。80年代以来对RAS的研究已深入到基因和分子水平,如RAS基因多态性与高血压发病的研究等[3]。近年来应用基因打靶(gene targeting)则为 RAS研究提供了一个全新的手段,本文着重介绍其中的基因敲除(gene kockout)在这方面的应用。
  1基因敲除的基本原理和步骤
  1.1 基本原理
  基因敲除是利用基因同源重组(gene homologous recombination)又称基因打靶的原理,用外源片断整合到活体细胞DNA的同源序列中,使某个基因被取代或破坏而失活,由于同源重组具有高度特异性和方向性,外源片断也具有可操作性,故该技术可使细胞的基因定点和定量改变[4,5]。
  1.2 基本步骤
  为了改变某个动物的基因型且能稳定遗传,家们经过长期探索建立了将胚胎干细胞(embryo stem cell ESC)基因打靶及胚胎移植结合起来的一套新技术[6,7]。ESC取自小鼠胚泡的内细胞层细胞,具有能在体外培养保存又能在一定条件下发育成个体的性能。在体外进行基因操作后植回小鼠胚泡发育成嵌合体。嵌合体是含有突变基因的性腺细胞,通过杂交便获得突变基因的纯合子和杂合子。基因敲除过程:先克隆ESC靶基因的同源片断。用限制性内切酶切开其外显子两端,插入一个标志/选择基因(常用Neo-新霉磷酸转移酶基因,作为阳性选择基因和阳性同源重组的标志),另在载体同源序列外围接上另一个阴性选择基因(常用单纯疱疹病毒胸腺嘧啶激酶基因,作为非同源重组的标志和筛选基因)。将载体导入ESC,用含G418/GANC的培养液作正负选择系统PNS)筛选出已发生同源重组的ESC,将后者植入另一怀孕小鼠的胚泡后发育娩出嵌合体小鼠。用Southem杂交来鉴定已携带敲除基因(即含Neo基因)的雄鼠,再用后者与同系雌鼠交配娩出基因敲除的杂合子即F1,F1近交便产生基因敲除的纯合子和杂合子(F2),经多次交配繁殖出数量众多的新品系小鼠且保持基因性状稳定遗传和供研究之用。
  2 RAS基因敲除近况
  rAS基因敲除只是近几年才出现的方法,但它极大促进了人们对RAS的认识。
  2.1 血管紧张原基因敲除
  tanimotok等[8]用基因敲除术建立了血管紧张素原(Agt)基因失活的纯合子和杂合子小鼠,并进行了一系列的研究,15个杂合子有4个幼鼠死亡,但成年鼠与纯合子和野生型小鼠的行为和主要脏器解剖学均无差异。纯合子血浆Agt和血管紧张素Ⅰ(AngⅠ)为阴性,杂合子为野生型42%,但纯合子肾组织mRNA表达增高6~8倍。与此同时纯合子鼠血压与野生型和杂合子相比,SBP、DBP和MAP分别下降33.5mmHg、14.3mmHg、20.8mmHg,而杂合子与野生型鼠的血压并无差别。为进一步研究Agt基因与血压之间的关系,Smithies等[9]通过精心设计的基因打靶(gap-repair gene targeting)培养出含不同野生型 Agt基因拷贝数量的小鼠(分别含有0~4个拷贝)。结果Agt基因缺失型小鼠、幼鼠大部分死亡,少数成活的成年鼠却有肾小球小动脉壁增厚,肾皮质变薄和肾小球萎缩,但繁殖力正常。含1~4个Agt基因小鼠生长发育及肾组织结构正常无异,最明显的变化是随着基因拷贝增多,血中Agt水平几乎呈线性水平增高,从35%(单拷贝)到124%(3拷贝)和145%(4拷贝),同时血压升高程度达到8mmHg/每拷贝,该模型说明了Agt基因与血压水平之间的数量依存关系。最近该作者又将转基因技术与基因打靶结合起来,将含人肾素和Agt基因的小鼠与Agt缺失型小鼠交配,使后者重新携带人肾素及Agt基因,结果纠正了纯合子的低生存率及肾病变,同时血压升至正常。该模型表明,Agt对小鼠特别是肾的生长发育非常重要,且人类Agt基因也能取代小鼠Agt基因的功能[10,11]。
  2.2 血管紧张素Ⅱ受体基因敲除
  血管紧张素Ⅱ(AgtⅡ)受体目前分为Ⅰ型(AT1)和Ⅱ型(AT2),AgtⅡ主要通过AT1起作用。AT1又可细分为AT1a和 aT1b两个亚型,它们高度同源但组织分布不同,由于缺乏有效的方法来分别两者生理分工[12],Masaki等[13]用基因敲除培养出缺乏AT1a受体基因小鼠纯合子和杂合子与野生型相比,两种基因型小鼠的生长发育及心、脑、肾、血管组织结构正常,肾组织Ang-AT1受体结合为阴性,杂合子为野生型50%,杂合子及纯合子基础血压分别比野生型降低了12mmHg和24mmHg。他们还观察到几种基因型对 angⅡ反应,纯合子几无反应,杂合子升压幅度低且血压回降速度快,结果证明AT1a是AngⅡ调控血压所必需的。Taskeshi等[14]建立的小鼠已证实了上述结论,且发现纯合子肾组织mRNA和血中肾素水平明显升高,他们还进一步研究了该模型小鼠肾小球AT1a分布及对AngⅡ(激动剂)和CV-11974(拮抗剂)作用,证实 aT1a分布主要入球、出球小动脉和系膜细胞,AngⅡ主要通过AT1a起作用[15]。Lutz等[16]培养出AT2受体基因缺失型杂合子和纯合子小鼠,两者幼鼠成活率相同,重要脏器结构均正常,基础血压也无改变,仅纯合子小鼠对AngⅡ反应超常及对脱水试验反应迟钝,主动活动减少,作者认为AT2对生长发育并不重要但参与RAS系统的心血管功能和中枢神经系统功能的调节。但Lchiki等[17]建立的同样模型却发现突变型小鼠基础血压比野生型高,作者还进行了系列药理试验,给野生型和缺失型小鼠以AngⅡ、losartan、captopril,结果AngⅡ升压作用在缺失型强于野生型,lostartan降压作用也是如此,但 captopril效果两组之间相同,作者认为在AT2功能上有直接对抗AT1作用。对于两种AT2基因缺失型小鼠血压变化不同的现象,Lutz认为与小鼠品种稍有不同而遗传背景相差有关。
  2.3 ACE基因敲除
  业已证明,ACE基因编码体细胞型和睾丸型两种同功酶,但后者功能仍不清楚,为了研究它们在血压调控和生育调控方面的作用,Krege等[18]用插入法敲除了ACE基因中对两种ACE编码必需的第14个外显子。结果表明杂合子和纯合子幼鼠成活率降低,雌鼠繁殖能力正常而雄鼠下降,两种基因型鼠肾脏发生退行性改变,值得注意的是尽管雌雄鼠两种纯合子和杂合子血ACE活性减低,但仅雄鼠的血压下降15~20mmHg。作者认为,ACE对肾脏发育是必需的,在调节血压方面存在性别差异,人类是否有这种情况需进一步研究[19]。此后该作者又用所谓双基因打靶术(double gene targeting)培养出含1、2、3、4个功能性ACE基因的小鼠,结果随着基因数量增加,心脏重量亦增加,肾脏mRNA表达增强,但血压始终末见有差别。作者认为,ACE活性变化只有足以超过体内平衡机制方会导致血压改变[20]。最近Charles等[21]用基因敲除培养出ACE基因突变小鼠。后者ACE基因不能编码含羧基末端氨基酸残基的ACE肽链。结果小鼠血浆ACE活性虽然很高,但组织细胞中却未测到ACE结合。同时伴低血压、肾脏病变和尿浓缩功能损害,其表型与完全缺乏ACE基因小鼠相同,证明ACE羟基末端含有膜结合点,如果缺乏则ACE只能全部释放出细胞而不能发挥对组织结合和调节功能。
  2.4 肾素基因敲除
  肾素是RAS中的限速酶,Mattew等[22]建立了缺失肾素基因-2(Ren-2)的小鼠,结果小鼠外观和组织学检查均未见异常,血压亦无变化,只是血浆肾素活性高于野生型。但该小鼠是含两个肾素基因(Ren-1和Ren-2)的为数不多的动物之一,作者认为正常机体发挥作用主要靠Ren-1基因。
  3 展望
  利用同源重组技术建立新的动物模型是分子生物学和遗传学中具有里程碑意义的突破。人们可以在此基础上更多、更快、更准确地培养出基因缺失、基因突变、转基因动物对基因表达及调控和其功能进行细致的研究。过去由于方法限制,对高血压相关基因研究难于突破,而利用该项技术可以定点定量研究有关基因对心血管结构和功能的影响,从而为研究高血压的发病机制和防治开辟了广阔深入的途径。
  1 kathy K et al.Circulation,1993;87:1816~828
  2 laragh JH.Kidney int,1993;44:1163~1175
  3 lifton RP.Proc Natl acad Sci USA,1995;92:8545~8551
  4 Capeechi RP .Scientifie america,1994;270(3):34~38
  5 Becker KD et al.Hypertension,1996;27:499~501
  6 evans MJ.Nature,1981;292:154~156
  7 te Riele H et al.Proc Natl Acad Sci USA,1992;89:5138~5132
  8 tANIMOTOK SF et al.J biol Chem,1994;269:31334~31337
  9 smithies O et al.Proc Natl Acad Sci USA,1995;91:3612~3615
  10 Robin d et al.J Clin Invest,1997;99:1258~1264
  11 Kim hS et al.Proc Natl Acad Sci USA,1995;92:2735~2739
  12 Theodoree O et al.N Engl J Med,1996;334:1649~1655
  13 Masaki I et al.Proc Natl Acad Sci USA,1995;92:3521~3525
  14 Taskeshi S et al.J Biol Chem,1995;270(32):18719~18722
  15 Kenjiro K et al.Kidney Int,1997;52:S201~S204
  16 Lutz h et al.Nature,1995;377(26):744~747
  17 Lchiki T et al.Nature,1995;377:748~750
  18 Krege jH et al.Nature,1995;375;146~148
  19 Hilgers KF et al.Hypertension,1997;29:216~221
  20 Krege jH et al.Hypertension,1997;29:150~157
  21 Charles R E et al.J Clin Invest,1997;99:2375~2385
  22 Mattew GF et al.Hypertension,1996;28:1126~1131