浅谈如何提高学生解决应用题的能力
来源:岁月联盟
时间:2010-08-18
一、 加强基础知识和基本技能的教学
学生在解决应用题时,通常要借助原有的知识和经验。当学生对于概念、性质、方法、、数量关系的理解达到一定的程度时,学生的认知结构中积累了非常丰富的“原型”时,学生分析应用题时便可根据以往的经验更灵活,更独特的思考问题。比如说,在教有关“倍”的数量关系时,核心问题是对“倍”的认识。为了使学生理解“倍”的意义,教学中可以这样进行:第一步从同样多入手。教师在第一行摆了2个△,第二行摆了2个○,启发学生说出○与△的个数同样多。第二步引出差,使差与比的标准同样多。接着在第二行再摆上1个○,这时○比△多1个。然后在第二行再摆上1个○,使学生说出○比△多2个;再引导学生通过观察得出:○比△多的部分与△的个数同样多。第三步从分数入手建立“倍”的概念。接上面,如果把2个△看作1份,○有这样的几份呢?○有这样的2份,我们就说○的个数是△个数的2倍。把“倍”的概念理解透了,那么教有关“倍”的数量关系时就比较容易了。如果在建立每一种数量关系时,都能使学生透彻地理解,牢固地掌握,那么就为多步应用题的教学打下良好的基础。
二、创设情景,帮助学生全面理解题意
要让学生会做应用题,学生必须对应用题熟悉。只有让学生有了认真读题的习惯,使题目的情节、数量关系等在解题时自始自终地保持在学生地头脑中,才可能更好地解题。
1.利用生活中的实际例子,提高学生的兴趣,让学生掌握解题的方法。如:在教学三步的应用题时,笔者设计了这样一道应用题:同学们,老师有件事要请你帮忙,昨天,一年级的小朋友排练节目,排着排着,有几个小朋友说肚子饿了,我随手掏出18元钱,让一个小朋友去买方便面。他回来告诉我说,店老板开始只同意给12包,我说批发部里比你的便宜得多,老板说,每包再便宜0.5元,共给我17包。现在请大家帮我算算,按店老板的说法,有没有给错。如果没给足,课后请大家帮老师将少给的要回来。学生在发言过程中说出自己的解题思路、方法和步骤,学生在很短的时间内就掌握了三步计算的应用题。
2.根据应用题的情节,直接用实物演示。如:有一座大桥长1550米,一列长100米的列车以每秒15米的速度开过这座大桥,火车过桥需要多长时间?引导学生用短铅笔比作火车,铅笔盒比作大桥,自己表演一下火车是怎样过桥的。火车到什么地方才算全部过桥?这样,学生很快明白为什么要把火车自身的车长也计算进去,从而找到解题途径。
三、精心设计练习,提高解题能力和思维水平
(一)一题多问。
一题多问是就相同条件,启发学生通过联想,提出不同问题,以此促进学生思维的灵活性。
例如:三年级有女生45人,比男生少1/10。
问:
①男生有多少人?
②男生比女生多几分之几?
③男生占全年级总人数的几分之几?
(二)一题多变。
这种练习,有助于启发引导学生分析比较其异同点,抓住问题的实质,加深对本质特征的认识,从而更好地区分事物的各种因素,形成正确的认识,进而更深刻地理解所学知识,促进和增强学生思维的深刻性。一般可以采用“纵变”和“横变”两种形式。 1、“纵变”:使学生对某一数量关系的有一个清晰的认识。
例:某工厂原来每天生产40台机器,现在每天生产50台机器,是原来的百分之几?
变化题:
(1)某工厂原来每天生产40台机器,现在每天生产50台机器,比原来增产了百分之几?
(2)某工厂现在每天生产50台机器,比原来增产了25%,原来每天生产多少台机器?
(3)某工厂原来每天生产40台机器,现在比原来增产了25%,现在每天生产多少台机器?
2、“横变”:训练学生对各种数量关系的综合运用
例:粮店要运进一批大米,已经运进12吨,相当于要运进大米总数的75%。粮店要运进大米多少吨?
变化题:
(1)粮店要运进大米16吨,用4辆汽车运一次,每辆运2.5吨,还剩下多少吨大米没有运到?
(2)粮店要运进大米16吨,先用4辆汽车运一次,每辆运2.5吨,剩下的改用大车运,每辆大车运0.6吨。一次运完,需要大车多少辆?
(3)粮店要运进大米16吨,先用4辆汽车运一次,每辆运2.5吨,剩下的改用大车运,每辆大车比汽车少运1.9吨。一次运完,需要大车多少辆?
(4)粮店要运进大米16吨,先用汽车运进75%;剩下的改用大车运,每辆大车运的吨数是汽车已运吨数的1/24。一次运完,需要大车多少辆?
(5)粮店要运进面粉14吨,是运进大米吨数的7/8。这些面粉和大米,用4辆汽车运,每辆运2.5吨,需要运几次?
这样,从“纵”、“横”两个方面进行练习,就不断加深了学生对数量关系的理解,使学生的思维从具体不断地向抽象过渡,发展了逻辑思维,提高了学生分析、解答应用题的能力。
(三)一题多解。
一题多解主要指根据实际情况,从不同角度启发诱导学生得到新的解题思路和解题方法,沟通解与解之间的内在联系,选出最佳解题方案,从而训练了思维的灵活性。
例:某班有学生50人,男生是女生的2/3,女生有多少人?
(1)用分数方法解:50÷(1+2/3)=30(人)
(2)用方程方法解:X+2/3X=50 或X(1+2/3)=50X=30
(3)用归一方法解:50÷(2+3)×3=30(人)
(4)用按比例分配方法解:50×3/(3+2)=30(人)
在小学应用题教学工作中,教师只有通过灵活多样的方法因材施教,努力探寻应用题教学中的和方法,激发学生对应用题的学习兴趣,方能提升学生的数学思维能力,从而达到全面提高学生素质的要求。
上一篇:学好高中历史之我见
下一篇:如何帮助学生学好化学