天然气在城市供暖中的应用
Application of natural gas to space heating in cities | |
摘要 阐述了燃气锅炉、燃气热电联产和燃气热泵等天然气供暖应用方式、技术特点及目前情况,进而以一次能源消耗和性为指标,分析比较了这些形式的优缺点和应用场合。 关键词 天然气,能耗,经济性 Abstract Expounds the applications, technical features and current situation of gas-fired boiler, gas cogeneration and gas-driven heat pumps, and compares their advantages and disadvantages and applicability with primary energy consumption rate and economics as evaluation indices. Keywords natural gas, heating, energy consumption, economics | |
|

图4 质子交换膜燃料电池(PEMFC)的工作原理
燃料电池具有无污染、高效率、适用广、无噪声和能连续运转等优点。它的发电效率可达40%以上,热电联产的效率也达到80%以上。目前,多数燃料电池正处于开发研制中,已经推向市场的产品仍较昂贵(1500美元/kW以上)。但随着该项技术商业化进程的推进,必将在未来燃气供暖行业起到越来越重要的作用。目前从事燃料电池研究和开发的主要有美国、加拿大、日本、德国等国的公司。我国也有大连化物所等多家单位从事燃料电池的研究。
1.3 燃气热泵
燃气热泵是由燃气驱动,利用环境热量供热的装置,如图5所示。燃气热泵供热量是燃气热量与环境热量之和,因此它的效率高于燃气锅炉。携带热量的环境介质可以是周围空气、江河湖海的水,地热以及其他余热介质等。根据工作原理的不同,可以分为燃气压缩式热泵和燃气吸收式热泵两种。

图5 燃气热泵原理简图
1.3.1 燃气压缩式热泵的原理如图6所示,燃气首先在动力装置中燃烧并做功,将热能变成机械能和烟气余热。动力装置可以是燃气轮机、内燃机等。上述机械能推动压缩式热泵吸收环境热量而产生用于供暖的热量,同时动力装置的烟气余热经过余热锅炉变成供暖用热。这各供暖系统具有很高的供热效率,可达160%以上。

图6 燃气压缩式热泵的构成
吸收式热泵是通过工质(如水)的蒸发和冷凝,以及溶液吸收和再生等传热传质过程来工作的。常见的工质主要有溴化锂溶液和氨-水等。对于溴化锂燃气热泵,单效型热泵供热效率可达150%~170%,双效型则可超过200%。
由于技术条件的局限,在我国北方地区的严寒期因除霜困难和效率低等问题,燃气热泵与电动热泵一样,直接从环境空气吸热的空气源热泵受到限制。但是,利用地热、江河湖海水和其他余热的燃气热泵则在北方地区更有推广价值。
2 能耗分析
用一次能耗率b作为供暖系统能耗的评价指标,它表示单位供热量的一次能耗量(即燃料耗量)。对于燃气锅炉,一次能耗率bb是供热效率ηnot(考虑管道损失)的倒数,即





表1 各效率取值
家用及小型燃气炉 | 区域燃气锅炉 | 燃气热电联产 | 燃气压缩热泵 | 燃气吸收热泵 | ||||
锅炉加汽轮机 | 单循环 | 联合循环 | 燃料电池 | |||||
ηno | 0.90 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | - |
ηe | - | - | 0.25 | 0.30 | 0.40 | 0.45 | 0.30 | - |
COP | - | - | - | - | - | - | 3.50 | 1.50 |
图7 各天然气供暖形式的一次能耗率
可以看出,燃气热电联产的能耗率明显小于其他供暖形式,燃气热泵居中,而燃气锅炉的能耗最大。燃料电池、联合循环热电联供暖能耗率为负值,说明这些供暖系统仅发电所用能耗已经低于一般的发电系统(全国平均发电能耗)了,因而用于供暖的余热就更不会耗能了。燃气压缩式热泵由于机械能转换为热能的较大不可逆损失,以及燃气吸收式热泵由于发生器传热的较大不可逆损失,使得燃气热泵的一次能耗大于热电联产。而燃气锅炉燃烧后烟气与水(或蒸汽)的传热不可逆损失更大,因而导致其能耗又高于燃气热泵。所以,仅从能耗合理利用的角度,应优先推广热电联产供暖方式,而尽量避免使用燃气锅炉。
当然,由于燃气锅炉,尤其是家用燃气炉的可调性好,可以根据需要随时启停和调节供热量,进而减少燃气耗量,进而在热电联产应用最多的集中供热系统中,在旧的按面积收费管理体制下,由于用户末端缺乏调节手段也会带来能源的浪费。但是,随着今后按热量收费的新供热体制的推广,这一弊端会逐步得到克服。
供暖形式的经济性问题比上述能耗总是更为复杂,它取决于供暖系统自身的经济特性和外界条件两个方面。就系统自身特性而言,主要包括系统投资、各能源转换环节的效率、设备使用年限、系统维护费以及人工工资等等,但主要是前三项。一般情况下,系统效率越高,投资也就越大,两者对经济性的影响正好相反。在外界条件方面,主要影响因素包括能源价格,如天然气价格、电价等,以及系统承担的供暖负荷特性,如最大供暖负荷小时数。如果作方案比料,可以不考虑热价,以单位供热容量折运行成本z,元/kW,作为经济性的评价指标,即系统投资折旧与运行费之和。为使分析总是更加清晰,运行费中主要考虑燃料费用。
对于燃气锅炉和燃气热泵,单位供热容量的年运行成本z为:
z=rv+Cfbh,其中v为单位供热容量的系统投资,元/kW;r为折旧率,它为系统使用年限的倒数;b为系统一次能耗率;h为最大年供热小时数;Cf为天然气价格,元/m3。
对于燃气热电联产系统,应将发电收从成本中扣除,于是:

以下对天然气供热系统进行简单的经济分析,其中燃气锅炉以家用燃气炉为例,燃气热泵以压缩式热泵为例,燃气热电联产则以单循环为例。燃气炉投资取为300元/kW,燃气热泵投资取为1400元/kW。燃气热电联产投资为3500元/kW,其中热电联产热源投资为2700元/kW(相当于单位kW发电容量投资为4500元),热网投资为800元/kW。为简化起见,折旧年限均为20年。各供暖形式的效率仍取表1的值。于是,可以获得当天然气价格、电价以及供热运行小时数等外界条件变化时,经济性最佳的天然气供暖方式(见图8、图9)。

图8 燃气供暖形式的经济性分布
图8的经济性分布是在电价为0.4元/(kW·h)的条件下获得的。可以看出,虽然燃气锅炉的能耗高,燃料费昂贵,但由于投资小,使得相当供暖时间短时,是最经济的。在供暖时间较长时,热泵和热电联产就会体现出运行成本低的优势。由于受廉价的燃煤发电竞争,燃气热电联产的发电电价不可能取得过高,在这种情况下,虽然热电联产的能耗低于热泵,但当天然气价格较高时,燃气热泵的经济性要好于燃气热电联产。

图9 燃气供暖方式随电价的经济性分析
图9给出天然气供暖随电价和天然气价格变化的经济性分布,其中年供暖小时数取为2000h。可以看出,在电价和天然气价格很低的条件下,以燃气锅炉供暖合适。天然气价格较高而电价较低时,燃气热泵最经济。当天然气价格较低而电价较高时,热电联产经济性好。
一般北方地区供暖时间较长,加之天然气价格昂贵,只有通过提高能源利用效率的途径来降低供暖成本,即采用燃气热泵和热电联产。燃气热泵受气候条件的影响,水源或地热燃气热泵的使用也会受到不同程度的环境限制。因此,在现有的技术条件下,燃气热泵尚不具备大量推广使用的条件。热电联产的能耗最低,但是在电价高和使用时间长的条件下才具有经济优势。
在燃气价格高于1.40元/m3时,只有电价超过0.45元/(kW·h)热电联产才是最经济的。而一般的燃煤电厂的发电成本不会超过0.30元/(kW·h)。因此,燃气热电联产系统发电上网时,在电力市场中无法与燃煤电厂竞争,怎么办?一种有效的途径是利用燃气热电联产负荷调节的灵活性,作为电网的调峰电厂运行,进而以较高的调峰电价上网[1]。另一条途径是楼宇式天然气热电联产系统。这样可减小热力管网投资,同时发电自用,代替电网价格较高的电能。例如,北京商业用电价格为0.60元/(kW·h),天然气价格为1.80元/m3,由图8可知,在这一价格下,燃气热电联产是经济的。另外,还可以利用热电联产的供热量驱动吸收式制冷机,用于夏季空调,形成电热冷三联供,将会增加年供热时间,提高热电联产系统的经济性。
4 结论
4.1 从合理利用能源的角度应优先推广天然气热电联产的供暖方式,但还需进行技术经济的综合比较。
4.2 对于供暖时间较短的用户,可以采用燃气锅炉方式供热。对于投资较大的热电联产系统,尖峰负荷由于发生时间
短,也可用燃气锅炉承担。
4.3 在我国现有条件下,燃气热电联产应用的理想途径是以电力调峰方式上网运行,并可以发展楼宇式小型热电(冷)联产系统。
4.4 燃气热泵可以在气候、水源、地热或其他余热等条件允许的地方加以应用。
1 江亿,付林,天然气在城市供暖中应用的新途径,能源,2001(5)